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This appendix reviews the key mechanical concepts that arise 
in chapter 2, including force, torque (moment), stress, strain, 
stress-strain relationships, structural and material properties, 
and material/structural failure.
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Force
The common meaning of force is a push or pull. For 
example, when chewing food, the maxillary and man-
dibular teeth generally come together to crush a bolus 
of food with a compressive (pushing) force. A good 
example of a tensile (pulling) force arises when mus-
cles activate during chewing. For example, the masseter 
muscle, which runs between the zygomatic arch and 
the angle/lateral surface of the ramus of the mandible, 
contracts to exert a tensile force on the mandible, pull-
ing it toward the maxilla.

In addition to the type of force (eg, tensile, compres-
sive, shear, etc), there are two other defining characteris-
tics of a force: magnitude and direction. Force is a vector 
quantity. For example, when a patient bites on a food 
particle caught between the crown of a dental implant 
in the mandible and the opposing crown of a natural 
tooth in the maxilla, the force on the mandibular crown 
of the implant might have a magnitude of 100 N, and its 
direction can be represented by a downward-pointing 
arrow acting on the crown. Likewise, one can envision 
an upward-pointing arrow (with a magnitude of 100 N) 
acting on the maxillary crown of the opposing tooth—
an example of Newton’s Third Law of Motion (action 
and reaction).

Confusion sometimes arises between the terms force 
and pressure. Force is measured in units such as pounds 
(lb) or Newtons (N). Pressure, which is actually a type 
of stress, is measured in units of force per unit area 
(F/A), with units such as lb/in2 (psi) or N/m2 (Pascal; 
Pa). For example, when a patient bites on a piece of 
hard candy with a force of 100 N, suppose the 100 N 
force is distributed over a very small area of contact 
(1 mm2) where the candy touches the tooth’s enamel 
surface. Here it’s correct to state that the bite force on 
the candy is 100 N, while the contact pressure between 
the tooth and candy is 100 N/1 mm2, which can also be 
expressed as 100 N/10–6 m2 = 100 × 106 Pa = 100 MPa. 
If the area of contact were even smaller, say 0.5 mm2, 
then the contact pressure would be 200 MPa. Thus, with 
the same bite force of 100 N, one can generate different 
bite pressures (stresses) during chewing, depending on 
the contact area over which the force acts. So, when 
describing the value of a bite force, it’s appropriate to 
use force units, not pressure or stress units.

There is also sometimes confusion between force and 
mass. For example, a typical orthodontic “force” to move 
a tooth might be in the realm of 30 g (0.03 kg), which is 

strictly a contradiction in terms because a gram is a unit 
of mass, not force. However, a 30-g mass is equivalent to 
a force whose magnitude can be determined using the 
well-known equation F = ma, where F is force, m is mass, 
and a is acceleration. In this orthodontic example, the 
value of acceleration a would be g, the acceleration due to 
gravity at sea level, 9.81 m/s2. (Here, the equation F = ma 
can take the form W = mg, where W represents weight.) 
So, 30 g (0.03 kg) is equivalent to a force of 0.29 N.

Moment (Torque)
A moment (or torque) describes the tendency of a force 
to produce rotation around a point or an axis. Common 
examples of the use of torque in dental implantology 
include inserting a screw-shaped implant into an oste-
otomy site at some prescribed insertion torque value 
or tightening an abutment screw. Moment/torque is 
reported as force times distance, with units such as 
Ncm. This can be understood from studying App Fig 
2-1, showing a type of dental torque wrench. One uses 
the wrench by applying a force F perpendicular to 
the handle at some distance d from the center of the 
implant or abutment screw. The resulting torque at the 
implant (also called a moment, abbreviated as M) would 
be computed as M = Fd. So, if a 5-N force were to be 
applied perpendicular to the handle of the wrench 7 cm 
from the centerline of the implant or abutment screw, 
the magnitude of the applied moment (torque) at the 
implant or screw would be 5 N × 7 cm = 35 Ncm.

In mechanics, a moment or torque is also a vector 
quantity, and in this example, the 35-Ncm torque would 
have a direction defined by an arrow pointing into the 
page. Another way to convey this directionality is to say 
that the torque in this example is causing a clockwise 
rotation of the implant or abutment screw.

APP FIG 2-1 A simple torque wrench for dental implant 
applications.
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Another example of a moment (torque) comes from 
the time of Galileo.1 He considered the case of a wooden 
beam loaded by a weight E hung from the beam’s end 
(App Fig 2-2), ie, a beam loaded as a cantilever. For dis-
cussion purposes, the weight of the beam itself will be 
neglected. If the length of the beam is d and the weight E 
exerts a force F at the end of the beam, then the moment 
(or torque) at the location where the beam meets the 
wall is equal to Fd. This is also called a bending moment.  

This analysis is relevant to dental implantology 
because this cantilever beam is analogous to the can-
tilevers that sometimes exist in a full-arch prosthesis 
supported by several implants, as depicted in a finite 
element (FE) computer model (App Fig 2-3). The FE 
model illustrates a U-shaped, full-arch titanium pros-
thesis supported by four titanium implants installed 
in a simplified semicircular mandible made of cortical 
bone. The FE model considers two different cantilever 
lengths, 17 mm and 25 mm, with the cross-sectional 
shape of the titanium prosthesis always the same. Each 
prosthesis is loaded bilaterally by 300-N forces acting 
downward (negative z direction) at the distal end of each 
cantilever. Using the same approach as with Galileo’s 
wooden beam, each distal part of the prosthesis can be 
approximated as a cantilever beam with one end fixed at 
the distal implant. It follows that the moment acting on 
the prosthesis at the location of the most distal implant 
is Fd, where d is the cantilever length and F is 300 N. 

So, for the 17-mm cantilever, the moment would be 
300 N × 17 mm = 510 Ncm, while for the 25-mm can-
tilever, the moment is 750 Ncm. Therefore, the longer 
the cantilever, the greater the moment is at the point 
where the prosthesis is supported at the distal implant.

The relevance of this analysis involves the concept 
of stress, which is covered in the next section, but for 
now we can point out that the stress in a cantilever 
beam depends on the value of the bending moment at 
the location of interest, so the 25-mm cantilever will 
undergo greater stresses than the 17-mm cantilever. 
Indeed, FE results show that the stress at the top surface 
of the 25-mm cantilever is roughly twice as large as it 
is for the 17-mm cantilever at the location of the distal 
implants (note the color scale for stress and the dark 
blue color indicating stresses of a few hundred MPa on 
the top surface of the beams in App Fig 2-3). As to the 
physical meaning of stress, see the next section.

Stress
In mechanics, the concept of stress quantifies what 
happens inside the body of a material when it is sub-
jected to external loads such as forces, moment, pre-
scribed deformations, or some combination of all three. 
A simple, everyday example of stress arises when one 
squeezes a soft, solid rubber ball in one’s hand. The 

APP FIG 2-2 A sketch of a wooden cantilever beam 
from the early work of Galileo.

APP FIG 2-3 Stress analyses of 17-mm and 25-mm cantilevers that are part 
of full-arch prostheses loaded bilaterally with 300 N. (a and b) Model geometry. 
(c and d) Distributions of tensile stress throughout the model.
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forces from the hand cause the ball to deform, and as 
this happens, internal forces develop inside the ball, 
a fact that can be deduced from the fact that the ball 
springs back to its original shape after the hand stops 
squeezing it. The internally generated forces in the ball 
tend to restore it to its original shape.

An example of stress along just one direction—uni-
axial stress—is depicted in an early illustration by Gal-
ileo (App Fig 2-4). A uniform column has a weight C 
applied to the end near point B while the top of the 
column near point A is held fixed. Suppose the force 
(weight) from the attached block C at the lower end of 
the column is a downwardly directed force F. Then, if 
the cross-sectional area of the column is the same value 
A everywhere along the column’s length, the stress in 
the column is F/A and would be termed a tensile stress, 
ie, a stress tending to elongate the column. A similar 
example would be hanging a small weight from a rubber 
band. If the direction of F were reversed, the magnitude 
of the stress in the column would still be F/A, but it 
would be assigned a negative sign to indicate that the 
stress is compressive. The dimensions of stress are force 
per unit area.

Additional important features of stress include the 
fact that a stress is not always uniaxial, nor does a stress 
always have the same value (magnitude) or direction-
ality from point to point in a material. Depending on a 
number of factors (such as the geometry of a body and 
how it is loaded, etc), the stress state throughout the 

body will sometimes be multiaxial and spatially non-
uniform. Stress state refers to the stress condition at 
a given point in the body, and multiaxial means that 
stresses at a point may be acting in more than one direc-
tion because more than one stress component exists. 
Unfortunately, because stress is more complicated than 
a scalar quantity, such as length, or a vector quantity, 
such as force, a complete explanation is beyond the 
scope of this appendix. However, the following example 
illustrates some key features to keep in mind.

Revisiting Galileo’s cantilever beam in App Fig 2-2 
and the FE model of the cantilever region of a dental 
prosthesis in App Fig 2-5, consider a cantilever beam 
from a prosthesis that measures 25 mm × 4 mm × 4 mm 
in the x, y, and z axes, respectively. Suppose the beam is 
made of pure titanium and loaded by a downward force 
F of 100 N at the end of the right face of the beam, while 
the left face of the beam (shaded blue in App Fig 2-5a) 
is held fixed. The beam is shown with the FE mesh in 
App Fig 2-5b. Example results from the stress analysis 
are shown in App Fig 2-5c and 2-5d.

App Fig 2-5c is a view of the surfaces of the beam with 
color-coding displaying the stress component acting 
in the x direction, longitudinal stresses parallel to the 
length of the beam. The regions with reddish-yellow 
colors on the top surface of the beam illustrate tensile 
(positive) stresses, which are greatest in magnitude at 
the left (fixed) end of the beam. Similarly, the dark blue 
and light blue regions at the bottom half of the beam 

APP FIG 2-4 Example 
of a column in tension, 
from the early work of 
Galileo.

APP FIG 2-5 An FE analysis of a titanium cantilever beam with the left end fixed 
and the right end loaded by 100 N in the negative z direction. (a and b) Geometry 
and mesh of the model. (c and d) Distributions of stress along the longitudinal and 
lateral directions, respectively. 
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illustrate longitudinal compressive (negative) stresses, 
which are greater in magnitude at the fixed end of the 
beam than at the free end. This finding also illustrates 
that the tensile and compressive stresses in this beam 
are greatest where the bending moment is greatest—at 
the fixed end of the beam. These results also show that 
the stress is spatially nonuniform.

App Fig 2-5d illustrates that at a given point in a body, 
stress might be acting in more than one direction (ie, 
the stress state is multiaxial). App Fig 2-5d displays the 
stress component that acts along the y-axis, and App 
Fig 2-5c shows the stress component that acts along 
the x-axis. So, we find that at various locations in the 
beam, stresses are acting along both the x and y axes at 
the same time. Though not shown here, there is also a 
stress component for this beam in the z-axis.

Strain
In mechanics, strain is a measure of deformation. The 
formal terms used to describe strain in the material of 
a body are similar to those used to describe stress. For 
example, as with stress state, the strain state at a given 
point in a body depends on factors including how the 
body is loaded and the body’s geometry. The same ques-
tions also arise about whether strain state is uniaxial or 
multiaxial and whether the strain distribution in the 
body of a material is spatially uniform.

Consider an initial example of strain that’s easy to 
visualize with the naked eye. Take a small patch of a thin 
rubber examination glove, draw a small square on it with 
a marker, and stretch the patch with a tensile force F 
along the horizontal direction (App Fig 2-6). Stretching 
a common rubber band will also work for this exercise. 
Before the rubber is loaded, the outline is approximately 
square (see App Fig 2-6a), but after loading, the square 
becomes rectangular (see App Fig 2-6b). That is, in the 
horizontal direction the square has elongated, but in the 
vertical direction the square has narrowed.

To quantify what’s happening, a common definition 
of strain, e, is a change in length divided by original 
length, as in the equation e = (Lf  – Lo)/Lo,  where Lf  and 
Lo are final length and original length, respectively. If 
one used a ruler to take measurements from the images 
in App Fig 2-6, one could then use the strain equation 
to calculate a positive value of strain (equal to about 
0.8) in the horizontal direction, and a negative value of 
strain (equal to about  –0.125) in the vertical direction. 

F F

a

b

APP FIG 2-6 (a and b) Images during a uniaxial tensile test of 
a patch of rubbery material from a dental examination glove. 
The ink square in a has deformed into a rectangle after a tensile 
force F load is applied in b.

These fractions could then be converted to percentages 
by multiplying each fraction by 100.

An interesting result is that even though the applied 
force F causes uniaxial tension (with stress only along 
the x-axis), the strain state is multiaxial, with a tensile 
strain occurring along the x-axis and a compressive 
strain occurring along the y-axis. Not shown is the 
fact that there’s also a compressive strain (about 0.125) 
along the z-axis. Meanwhile, the strain state is spatially 
uniform over the sample of rubber. Thus, the state of 
strain in this body is three-dimensional even though 
the stress state is one-dimensional—a fact that leads 
into the following section on the idea of stress-strain 
relationships and material properties.

Stress-Strain Relationships and 
Material Properties
If one considers a common coiled spring, its idealized 
behavior is described by the well-known expression F 
= kx, where F is the force exerted on the spring, x is the 
amount of stretch (or compression) of the spring, and 
k is the spring constant. This equation denotes a linear 
relationship between force and extension: To double 
the stretch of the spring, twice the force is required. 
This also implies elastic behavior, where if the spring 
is stretched and then unloaded, it would return to its 
original length. And while the spring constant k in 
this equation is actually more of a structural property, 
with a value depending not only on the material of the 
spring but also on the shape/size/design of the spring, 
it is analogous to a material property that arises in the 
stress-strain relationship.  



2
BIOMECHANICS OF TILTED IMPLANTS

A6

The simplest stress-strain relationship for a material 
follows the same model as the ideal spring equation. That 
is, for many common man-made materials (eg, titanium, 
acrylic, zirconia), and for at least a few biologic materials 
(eg, dense cortical bone, dentin, enamel), experiments 
show that stress and strain are linearly proportional to 
one another. The simplest stress-strain equations are 
for those materials with linear elasticity, in which the 
material’s behavior under loading and unloading is the 
same and in which stress is linearly proportional to strain. 
Moreover, the equations are most simple when the mate-
rial in question is isotropic, with the material properties 
being the same throughout. As materials become more 
complex, as in an anisotropic material, the stress-strain 
relationships become more complicated.

Starting with the simplest material model of a linear, 
isotropic, elastic solid, the equations representing the 
stress-strain relationship involve various constants—
material properties, such as moduli of elasticity (eg, 
Young’s elastic modulus, bulk modulus, shear modulus, 
etc), as well as Poisson’s ratio. These material properties 
are analogous to the spring constant k in the ideal spring 
equation. The significance of knowing the appropriate 
stress-strain relationship for a given material is that the 
equation allows for prediction of the strains in a material 
when the stresses are known, and vice versa.

The simplest example of a stress-strain relationship 
is an equation that applies (only) in the case of an iso-
tropic, linearly elastic material under a uniaxial stress 
σ, namely σ = Eε, where E is Young’s elastic modulus 
of the material in question and ε is strain in the same 
direction as the stress. For a numerical example of how 
this equation works, consider the act of stretching a 
common rubber band as per the rubber glove example 
in App Fig 2-6. Suppose the equation applies and the 
value of E for the rubber band is 1 MPa. If a uniaxial 
tensile force of 4 N is applied to a rubber band with a 
cross-sectional area of about 6 mm2, the uniaxial stress 
is 0.66 MPa. What is the predicted strain in the rubber 
band? Calculation shows that the strain ε is 0.66 MPa/ 
1 MPa = 0.66, or 66%.

We could take this example one step further. Suppose 
we know another constant in the stress-strain rela-
tionship of rubber, namely the Poisson’s ratio, which is 
defined as the negative of the ratio of lateral to longitu-
dinal strain in a condition of uniaxial stress. If Poisson’s 
ratio is known to be 0.45 for rubber and the longitudinal 
strain was 0.66 in our uniaxial stress test above, the lateral 
strain is predicted to be about 0.3 (0.66 × 0.45 = 0.297).

Generally, when performing stress-strain analyses 
for real, complex prostheses, implants, bone, teeth, 
periodontal ligament, etc, one will be confronted with 
much more complicated geometries, as well as signifi-
cant uncertainties about the actual material properties of 
the tissues involved. While geometric complexity can be 
solved by using advanced methods such as FE analysis, 
many biologic materials are anisotropic, having different 
material properties in different directions; viscoelastic, 
having time-dependent material properties; nonlinear in 
terms of the stress-strain relationship; biphasic, mean-
ing they are comprised of fluid and solid phases; and 
also nonuniform, having different chemical or physical 
makeup from place to place on the micro scale. Unfor-
tunately then, given current knowledge of the material 
properties of biologic materials, it is not often possible 
to account for the true complexity of the materials and 
systems in oral implantology. An important caveat is that 
in any mechanical analysis in engineering, one must start 
somewhere, and the analyst must strike an appropriate 
balance between several factors: (1) the (usually highly) 
idealized material models and assumptions employed in 
the analysis, (2) the real properties of the materials being 
studied, and (3) the overall goals of the analysis at hand. A 
pertinent quotation attributed to the statistician George 
E. P. Box states, “All models are wrong, but some are 
useful”—meaning that even if a model cannot perfectly 
replicate reality, it can at least serve as a starting point or 
perhaps be close enough to give some insight.

Material Versus Structural Properties
Confusion sometimes arises between the mechanical 
properties of a structure and the mechanical properties 
of the material making up the structure. For clarity, a 
structure is “any object that must support or transmit 
loads.”2 A material is what comprises the structure. 
Obviously, when a real structure supports or transmits 
loads, eg, a zygomatic implant that’s loaded in bone, 
the structure’s material also functions in the support 
or transmission of loads. But one can have a situation 
where a strong material is part of a structure that ends 
up being inadequate to the task at hand. For example, 
while most of the metals used in implant dentistry are 
themselves “strong,” it is nevertheless possible to have a 
“strong” metal configured in such a way that it is actu-
ally “weak”—at least compared to requirements of the 
specific structural situation.
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To make this point with a simple and admittedly 
contrived example, let’s consider the lateral stiffness in 
bone of two potential designs of a titanium zygomatic 
implant. We will assert that the lateral stiffness is in fact 
a structural property, defined as the constant K in the 
equation F = Kδ, where F is the lateral force applied at 
the top of the implant and δ is the resulting lateral dis-
placement of the top of the implant (App Fig 2-7a). The 
fact that K is a structural property (and not a material 
property) is evident from an FE model. Suppose each 
zygomatic implant is a 50-mm long cylinder made of 
the same grade of titanium, but one implant is 2 mm in 
diameter and the other is 5 mm in diameter. Suppose 
43 mm of each implant is well integrated in a cylinder 
of dense bone, leaving 8 mm of each implant protrud-
ing out of the bone. A lateral force of 100 N acts in the 
x-direction on the top of each implant. How does the 
lateral stiffness of the two implants compare?

App Fig 2-7b illustrates the answer: Under a 100-N 
lateral force in the x-direction, the smaller-diameter 
implant tilts (displaces) in the x-direction about 45 µm,  
and the larger-diameter implant tilts about 14 µm. 
Thus, the K values for the smaller- and larger- 
diameter implants are computed from K= F/δ, that is,  
2.22 N/micron and 7.14 N/micron, respectively. The 
larger-diameter implant has the greatest lateral stiff-
ness. Note that this is true even though the material 
properties (eg, elastic modulus, Poisson’s ratio) of the 
two implants are identical. In other words, the behavior 
of the implant under loading is appreciably determined 
by the diameter (structure) of the implant, so stiffness 
here is a structural property. Certainly, it is true that 
the material properties of the implant and surround-
ing bone also contribute to the lateral stiffness of the 
implant. If the elastic modulus of the implant and bone 
were decreased, the lateral stiffness of both implants 

would decrease. But the structure’s size and shape are 
key determinants of the stiffness.

This is clinically significant because measuring the 
lateral stiffness of an implant is one way to quantify 
the implant’s stability, ie, its ability to resist a lateral 
force. If the lateral stiffness of an implant is too weak, 
the implant may displace too much under functional 
loading and fail to adequately support a loaded pros-
thesis. The clinician must understand that lateral stiff-
ness depends not only on the material that makes up a 
structure but also the size and shape of the structure. 
The reader will find an article by Monje et al on the 
relationship between mechanical and biologic implant 
stability to be pertinent to this topic.3

Structural and Material Failure
As noted previously, structural properties and material 
properties are different, although together they deter-
mine the behavior of a structure in a given mechanical 
situation, including during failure. For example, the dis-
placement (deflection) of the top of the smaller-diameter 
implant versus the larger one from the last section could 
have been approximated using an equation from cantile-
ver beam theory (which actually only considers a beam 
fixed at one end and not a beam embedded in bone):

δ = fl3

      3EI
where δ is deflection, F is force, L is the length of the 

“beam,” E is Young’s elastic modulus of the material in 
the beam, and I is the second moment of inertia of the 
beam’s cross section. For a beam with a circular cross 
section with diameter d:

I = πd4

      3EI

APP FIG 2-7 (a) Lateral stiffness 
tests via an FE model of two ide-
alized zygomatic implants repre-
sented as uniform solid cylinders 
in dense bone. The smaller 
implant’s diameter is 2 mm, and 
the larger implant’s diameter is 
 5 mm. (b) The x-displacement of 
the implants is shown after a 
100-N lateral force is applied  
(displacement magnified 50×). 
The color scale is in millimeters. a b

F F

δ
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This equation indicates that if d is smaller, I will also 
be smaller, which in turn means that the deflection 
δ will be larger, all other factors remaining the same. 
This comports with the results obtained with the FE 
model—the 2-mm-diameter implant deflects more 
than the 5-mm-diameter implant. But this equation 
also reveals that the deflection depends on the elastic 
modulus of the beam E, which is a material property. 
So, rearranging the equation so it resembles the form 
used in the last section (F = Kδ), we obtain:

F = 3EI
         I3 δ

The term 3EI/L3 can be thought of as K, the structural 
stiffness in the equation F = Kδ. This shows explicitly 
that K depends on both geometric (I) and material (E) 
properties.

When it comes to the failure of a structure, this is 
usually accompanied by a failure of a material in the 
structure. Returning to the prostheses structures ana-
lyzed in App Fig 2-3, for example, at least two questions 
arise: (1) What types of failure are possible? (2) What 
types of failure are likely?

Typically, possible failure modes of common engi-
neering materials such as titanium and other metals 
include yielding, single-cycle overload, and fatigue 
(which is failure after many loading cycles, eg, 107 
cycles). Yielding means that the stress in the metal 
has exceeded the yield strength so that a permanent 
deformation (eg, a bend) of the metal has occurred. 
Single-cycle overload is captured in the ultimate tensile 
strength, which is the tensile stress that causes com-
plete fracture in a uniaxial tensile test. Values for these 
strengths are commonly listed in textbooks, handbooks, 
and websites.

For an example application of these data, consider the 
cantilever portions of the prostheses in App Fig 2-3. The 
FE results indicate that tensile stresses are concentrated 
at the top surfaces of both the 17- and 25-mm canti-
lever portions of the prostheses, with peak stresses of 
about 222 MPa and 394 MPa, respectively. Commercial- 
purity, cold-worked titanium has a yield strength of 
about 485 MPa and an ultimate tensile strength of about 
760 MPa. Thus, both values significantly exceed the peak 
tensile stress in either beam, suggesting that yielding or 
overload will not occur in one cycle of 300-N loading. 
On the other hand, if failure by fatigue is considered, the 
394-MPa peak tensile stress of the 25-mm beam exceeds 
the titanium’s fatigue endurance limit at 107 cycles,  
which is about 300 MPa, suggesting that fatigue failure 
is likely once the 25-mm cantilevers accumulate about 
10 million cycles of loading at 300 N. On the other hand, 
because the peak stress in the 17-mm cantilever is only 
222 MPa, fatigue is unlikely in that prosthesis.

The value in understanding key features of stress 
and failure is that successful prosthesis design can 
be accomplished via informed material selection and 
geometric design.
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